Contact
schliessen

Filtern

 

Bibliotheken

Logo der Bibliothek

Siegel TU Braunschweig Universitätsbibliothek Braunschweig
You do not seem to be within the network of Braunschweig University.
As student, researcher or staff member of Braunschweig University you can use the VPN service to gain access to electronic publications.
Alternatively, you can use your university username and password via Shibboleth to gain access to electronic publications with certain publishers. You can find more details in our Blog (in German).

Hodge–Teichmüller planes and finiteness results for Teichmüller curves

We prove that there are only finitely many algebraically primitive Teichmüller curves in the minimal stratum in each prime genus at least 3. The proof is based on the study of certain special planes in the first cohomology of a translation surface which we call Hodge–Teichmüller planes. We also show... Full description

Contributors: Matheus, Carlos
Wright, Alex
Contained in: Duke mathematical journal Durham, NC : Duke Univ. Press Vol. 164, No. 6 (2015), p. 1041-1077
Journal Title: Duke mathematical journal
Fulltext access:
Availability is being checked...
Links: Volltext (dx.doi.org)
Additional Link (projecteuclid.org)
ISSN: 0012-7094
DOI: 10.1215/00127094-2885655
Regional Holdings: TIB – German National Library of Science and Technology
Language: English
Notes: Copyright: © Copyright 2015 Duke University Press
ID (e.g. DOI, URN): 10.1215/00127094-2885655
PPN (Catalogue-ID): OLC1967197571
more publication details ...

Associated Publications/Volumes

  • Associated records are being queried...
more (+)
Internes Format
LEADER 02856naa a2200649 c 4500
001 OLC1967197571
003 DE-601
005 20160618065833.0
008 160206s2015 000 0 eng d
016 7 |a 30223  |2 DE-600 
024 7 |a 10.1215/00127094-2885655  |2 doi 
028 5 2 |a PQ20160617 
035 |a c1582-31c58b8c02f5ccb4c7b502dddc9dd32b76fe8c326086cbb41a1b1c479ae6f8e20 
035 |a 0069801620150000164000601041hodgeteichmllerplanesandfinitenessresultsforteichm 
040 |b ger  |c GBVCP 
041 0 |a eng 
082 0 9 |a 510 
084 |a mat  |2 natliz 
245 0 0 |a Hodge–Teichmüller planes and finiteness results for Teichmüller curves 
500 |a Copyright: © Copyright 2015 Duke University Press 
520 |a We prove that there are only finitely many algebraically primitive Teichmüller curves in the minimal stratum in each prime genus at least 3. The proof is based on the study of certain special planes in the first cohomology of a translation surface which we call Hodge–Teichmüller planes. We also show that algebraically primitive Teichmüller curves are not dense in any connected component of any stratum in genus at least 3; the closure of the union of all such curves (in a fixed stratum) is equal to a finite union of affine invariant submanifolds with unlikely properties. Results of this type hold even without the assumption of algebraic primitivity. Combined with work of Nguyen and the second author, a corollary of our results is that there are at most finitely many nonarithmetic Teichmüller curves in \mathcal {H}(4)^{\mathrm{hyp}} . 
700 1 |a Matheus, Carlos 
700 1 |a Wright, Alex 
773 0 8 |i in  |t Duke mathematical journal  |d Durham, NC : Duke Univ. Press  |g Vol. 164, No. 6 (2015), p. 1041-1077  |q 164:6<1041-1077  |w (DE-601)129078336  |x 0012-7094 
856 4 1 |u http://dx.doi.org/10.1215/00127094-2885655  |3 Volltext 
856 4 2 |u http://projecteuclid.org/euclid.dmj/1429282678 
901 |a OLC 
912 |a SYSFLAG_A 
912 |a GBV_OLC 
912 |a SSG-OLC-MAT 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_27 
912 |a GBV_ILN_35 
912 |a GBV_ILN_36 
912 |a GBV_ILN_38 
912 |a GBV_ILN_40 
912 |a GBV_ILN_70 
912 |a GBV_ILN_106 
912 |a GBV_ILN_112 
912 |a GBV_ILN_120 
912 |a GBV_ILN_125 
912 |a GBV_ILN_126 
912 |a GBV_ILN_130 
912 |a GBV_ILN_155 
912 |a GBV_ILN_193 
912 |a GBV_ILN_266 
912 |a GBV_ILN_304 
912 |a GBV_ILN_305 
912 |a GBV_ILN_310 
912 |a GBV_ILN_317 
912 |a GBV_ILN_323 
912 |a GBV_ILN_325 
950 |a 37D40  |a 30F60  |a Hodge–Teichmueller planes  |a Veech surfaces  |a algebraically primitive Veech surfaces  |2 DE-601 
951 |a AR 
952 |d 164  |j 2015  |e 6  |h 1041-1077