Contact
schliessen

Filtern

 

Bibliotheken

Logo der Bibliothek

Siegel TU Braunschweig Universitätsbibliothek Braunschweig
You do not seem to be within the network of Braunschweig University.
As student, researcher or staff member of Braunschweig University you can use the VPN service to gain access to electronic publications.
Alternatively, you can use your university username and password via Shibboleth to gain access to electronic publications with certain publishers. You can find more details in our Blog (in German).

Finite-horizon Markov population decision chains with constant risk posture

A Markov population decision chain concerns the control of a population of individuals in different states by assigning an action to each individual in the system in each period. This article solves the problem of finding policies that maximize expected system utility over a finite horizon in Markov... Full description

Main Author: White, Amanda M.
Contributors: Canbolat, Pelin G. | Author
Contained in: Naval Research Logistics (NRL) Vol. 65, No. 8 (2018), p. 580-593
Fulltext access:
Availability is being checked...
Interlibrary loan: Check possibility for interlibrary loan
Links: Additional Link (dx.doi.org)
ISSN: 0894-069X
1520-6750
Additional Keywords: ENDLICHER-HORIZONT
ENTSCHEIDUNGSFINDUNG
HILFSPROGRAMM
MARKOW-KETTE
ZUSTANDSRAUM
DOI: 10.1002/nav.21698
Notes: Copyright: Metadaten: TEMA, Copyright WTI-Frankfurt-digital GmbH
Copyright: (C) Alle Rechte beim Herausgeber
Physical Description: 14 Seiten, Quellen
ID (e.g. DOI, URN): 10.1002/nav.21698
PPN (Catalogue-ID): WTI061212474
Note: WTI TEMA DB
more publication details ...

Associated Publications/Volumes

  • Associated records are being queried...
more (+)
Internes Format
LEADER 02645nma a2200373 c 4500
001 WTI061212474
003 DE-601
005 20190208092259.0
007 cr uuu---uuuuu
008 190208s2018 000 0 und d
024 7 |a 10.1002/nav.21698  |2 doi 
035 |a (DE-599)WTI20190100159 
040 |b ger  |c GBVCP 
084 |a A  |2 FIZTtc 
084 |a 3BA  |a 3IN  |2 FON2006 
100 1 |a White, Amanda M.  |e verfasserin  |4 aut 
245 1 0 |a Finite-horizon Markov population decision chains with constant risk posture  |h Elektronische Ressource 
300 |a Online-Ressource  |a 14 Seiten, Quellen 
500 |a Copyright: Metadaten: TEMA, Copyright WTI-Frankfurt-digital GmbH 
500 |a Copyright: (C) Alle Rechte beim Herausgeber 
520 |a A Markov population decision chain concerns the control of a population of individuals in different states by assigning an action to each individual in the system in each period. This article solves the problem of finding policies that maximize expected system utility over a finite horizon in Markov population decision chains with finite state-action space under the following assumptions: (1) The utility function exhibits constant risk posture, (2) the progeny vectors of distinct individuals are independent, and (3) the progeny vectors of individuals in a state who take the same action are identically distributed. The main result is that it is possible to solve the problem with the original state-action space without augmenting it to include information about the population in each state or any other aspect of the system history. In particular, there exists an optimal policy that assigns the same action to all individuals in a given state and period, independently of the population in that period and such a policy can be computed efficiently. The optimal utility operators that find the maximum of a finite collection of polynomials (rather than affine functions) yield an optimal solution with effort linear in the number of periods. 
653 4 |a ENTSCHEIDUNGSFINDUNG 
653 4 |a ZUSTANDSRAUM 
653 4 |a MARKOW-KETTE 
653 4 |a ENDLICHER-HORIZONT 
653 4 |a HILFSPROGRAMM 
700 1 |a Canbolat, Pelin G.  |e verfasserin  |4 aut 
773 0 8 |i In  |t Naval Research Logistics (NRL)  |g Vol. 65, No. 8 (2018), p. 580-593  |q 65:8<580-593  |x 0894-069X  |x 1520-6750  |x 0894-069X 
856 4 0 |u https://dx.doi.org/10.1002/nav.21698 
912 |a GBV_WTI 
950 |a Entscheidungsfindung  |a Zustandsraum  |a Markow-Kette  |a endlicher Horizont  |a Hilfsprogramm  |2 DE-601 
950 |a endlicher Zustand  |a Ühnlichkeitsfunktion  |a optimale LÜœsung  |2 DE-601 
951 |a AR 
952 |d 65  |j 2018  |e 8  |h 580-593