Contact
schliessen

Filtern

 

Bibliotheken

Logo der Bibliothek

Siegel TU Braunschweig Universitätsbibliothek Braunschweig
You do not seem to be within the network of Braunschweig University.
As student, researcher or staff member of Braunschweig University you can use the VPN service to gain access to electronic publications.
Alternatively, you can use your university username and password via Shibboleth to gain access to electronic publications with certain publishers. You can find more details in our Blog (in German).

The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles

An epoxy resin, cured using an anhydride hardener, has been modified by the addition of pre-formed polysiloxane core-shell rubber (S-CSR) particles with a mean diameter of 0.18 µm. The glass transition temperature, Tg, of the cured unmodified epoxy polymer was 148 °C, and this was unchanged after th... Full description

Contained in: Polymer. The international Journal for the Science and Technology of Polymers and Biopolymers Vol. 54, No. 16 (2013), p. 4276-4289
Fulltext access:
Availability is being checked...
Interlibrary loan: Check possibility for interlibrary loan
Links: Additional Link (dx.doi.org)
Additional Keywords: ANHYDRID
BRUCHENERGIE
BRUCHPRUEFUNG
EPOXIDHARZ
GLASUEBERGANGSTEMPERATUR
GUMMI
KAVITATION
KUNSTSTOFF
MECHANISCHE-EIGENSCHAFT
NIEDRIGTEMPERATUR
RAUMTEMPERATUR
SILICON:POLYMER
ZUGFESTIGKEIT
DOI: 10.1016/j.polymer.2013.06.009
Notes: Copyright: Metadaten: TEMA, Copyright WTI-Frankfurt eG
Copyright: (C) Alle Rechte beim Herausgeber
Physical Description: 14 Seiten, 53 Quellen
ID (e.g. DOI, URN): 10.1016/j.polymer.2013.06.009
PPN (Catalogue-ID): WTI052010406
Note: WTI TEMA DB
more publication details ...

Associated Publications/Volumes

  • Associated records are being queried...
more (+)
Internes Format
LEADER 04126nma a2200457 c 4500
001 WTI052010406
003 DE-601
005 20190330150842.0
007 cr uuu---uuuuu
008 171223s2013 000 0 und d
024 7 |a 10.1016/j.polymer.2013.06.009  |2 doi 
028 5 2 |a TEMA2013_wti_pica 
035 |a (DE-599)WTI20130709638 
040 |b ger  |c GBVCP 
084 |a E  |2 FIZTtc 
084 |a 3KMN  |a 3LEX  |a 3KXM  |a 3IGB  |2 FON2006 
245 0 0 |a The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles  |h Elektronische Ressource 
300 |a Online-Ressource  |a 14 Seiten, 53 Quellen 
500 |a Copyright: Metadaten: TEMA, Copyright WTI-Frankfurt eG 
500 |a Copyright: (C) Alle Rechte beim Herausgeber 
520 |a An epoxy resin, cured using an anhydride hardener, has been modified by the addition of pre-formed polysiloxane core-shell rubber (S-CSR) particles with a mean diameter of 0.18 µm. The glass transition temperature, Tg, of the cured unmodified epoxy polymer was 148 °C, and this was unchanged after the addition of the S-CSR particles. The polysiloxane rubber particles had a Tg of about −100 °C. Atomic force microscopy showed that the S-CSR particles were well-dispersed in the epoxy polymer. The addition of the S-CSR particles reduced the Young's modulus and tensile strength of the epoxy polymer, but at 20 °C the fracture energy, GIc, increased from 117 J/m2 for the unmodified epoxy to 947 J/m2 when 20 wt% of the S-CSR particles were incorporated. Fracture tests were also performed at −55 °C, −80 °C, and −109 °C. The results showed that the measured fracture energy of the S-CSR-modified epoxy polymers decreased significantly below room temperature. For example, at −109 °C, a fracture energy of 481 J/m2 was measured using 20 wt% of S-CSR particles. Nevertheless, this value of toughness still represented a major increase compared with the unmodified epoxy polymer, which possessed a value of GIc of 174 J/m2 at this very low test temperature. Thus, a clear fact that emerged was that the addition to the epoxy polymer of the S-CSR particles may indeed lead to significant toughening of the epoxy, even at temperatures as low as about −100 °C. The toughening mechanisms induced by the S-CSR particles were identified as (a) localised plastic shear-band yielding around the particles and (b) cavitation of the particles followed by plastic void growth of the epoxy polymer. These mechanisms were modelled using the Hsieh et al. approach [33,49] and the values of GIc of the S-CSR-modified epoxy polymers at the different test temperatures were calculated. Excellent agreement was found between the predictions and the experimentally measured fracture energies. Further, the experimental and modelling results of the present study indicated that the extent of plastic void growth was suppressed at low temperatures for the S-CSR-modified epoxy polymers, but that the localised shear-band yielding mechanism was relatively insensitive to the test temperature. [Copyright Elsevier B.V. Reproduced with permission.] 
653 4 |a SILICON:POLYMER 
653 4 |a GUMMI 
653 4 |a BRUCHENERGIE 
653 4 |a EPOXIDHARZ 
653 4 |a ANHYDRID 
653 4 |a GLASUEBERGANGSTEMPERATUR 
653 4 |a ZUGFESTIGKEIT 
653 4 |a RAUMTEMPERATUR 
653 4 |a BRUCHPRUEFUNG 
653 4 |a KUNSTSTOFF 
653 4 |a KAVITATION 
653 4 |a NIEDRIGTEMPERATUR 
653 4 |a MECHANISCHE-EIGENSCHAFT 
773 0 8 |i In  |t Polymer. The international Journal for the Science and Technology of Polymers and Biopolymers  |g Vol. 54, No. 16 (2013), p. 4276-4289  |q 54:16<4276-4289 
856 4 0 |u http://dx.doi.org/10.1016/j.polymer.2013.06.009 
912 |a GBV_WTI 
950 |a Polysiloxan  |a Gummi  |a Bruchenergie  |a Epoxidharz  |a Anhydrid  |a Glasübergangstemperatur  |a Zugfestigkeit  |a Raumtemperatur  |a Bruchtest  |a Kunststoff  |a Zähfestigkeit  |a Kavitation  |a Niedertemperatur  |a mechanische Eigenschaft  |2 DE-601 
950 |a Kern-Schale-Partikel  |2 DE-601 
951 |a AR 
952 |d 54  |j 2013  |e 16  |h 4276-4289